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We present an analysis of the effect of dephasing on the single channel charge relaxation resistance of a
mesoscopic capacitor in the linear low frequency regime. The capacitor consists of a cavity which is via a
quantum point contact connected to an electron reservoir and Coulomb coupled to a gate. The capacitor is in
a perpendicular high magnetic field such that only one �spin polarized� edge state is �partially� transmitted
through the contact. In the coherent limit the charge relaxation resistance for a single channel contact is
independent of the transmission probability of the contact and given by half a resistance quantum. The loss of
coherence in the conductor is modeled by attaching to it a fictitious probe, which draws no net current. In the
incoherent limit one could expect a charge relaxation resistance that is inversely proportional to the transmis-
sion probability of the quantum point contact. However, such a two terminal result requires that scattering is
between two electron reservoirs which provide full inelastic relaxation. We find that dephasing of a single edge
state in the cavity is not sufficient to generate an interface resistance. As a consequence the charge relaxation
resistance is given by the sum of one constant interface resistance and the �original� Landauer resistance. The
same result is obtained in the high temperature regime due to energy averaging over many occupied states in
the cavity. Only for a large number of open dephasing channels, describing spatially homogenous dephasing in
the cavity, do we recover the two terminal resistance, which is inversely proportional to the transmission
probability of the QPC. We compare different dephasing models and discuss the relation of our results to a
recent experiment.
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I. INTRODUCTION

Interest in quantum coherent electron transport in the ac
regime has been revived recently thanks to progress made in
controlling and manipulating small high mobility mesos-
copic structures driven by high frequency periodic voltages
at ultralow temperatures. The state of the art includes the
realization of high frequency single electron sources, which
might be important for metrology. In Ref. 1 this was
achieved by applying large amplitude periodic voltage pulses
of a few hundred MHz on the gate of a mesoscopic capacitor.
The accuracy of this single electron emitter was analyzed
theoretically in Ref. 2. In Ref. 3, pulses of surface acoustic
waves were used to transport electrons one by one on a pi-
ezoelectric GaAs substrate. Two parameter quantized pump-
ing with localized electrical potentials has been demonstrated
in Ref. 4 and one parameter nonadiabatic quantized charge
pumping in Ref. 5. These experiments use frequencies in the
GHz range to control the population and depopulation of one
�or several� localized level�s�. Thus the dynamics of charge
relaxation is of central importance for these experiments.

Of particular interest to us here is the work of Gabelli et
al.,6 who succeeded in measuring both the in and out of
phase parts of the linear ac conductance G���= I��� /V��� of
a mesoscopic capacitor at the driving frequency ��1 GHz.
The capacitor consists of a submicrometer quantum dot �QD�
connected to an electron reservoir via a tunable quantum
point contact �QPC� and capacitively coupled to a metallic
back or top gate �see Fig. 1�.

The question “What is the RC time of a quantum coherent
capacitor?” has been theoretically addressed by Büttiker,
Thomas, and Prêtre.7 In the low frequency regime �
�1 /�RC, where �RC is the RC time of the system, the re-

sponse is determined by an electrochemical capacitance C�
and a charge relaxation resistance Rq. Together these deter-
mine the RC time in complete analogy to the classical case:
�RC=RqC�. These two quantities however, differ fundamen-
tally from their classical counterparts. In particular, the quan-
tum RC time obtained from their product, is sensitive to the
quantum coherence of the system and consequently displays
typical mesoscopic fluctuations.8–11 For a system with many
conducting channels,9 these fluctuations are present sepa-
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FIG. 1. �Color online� Mesoscopic capacitor. The full blue
�black� curve with arrows represents the current carrying channel
connected to the reservoir via the QPC while the dashed-dotted
black curves with arrows represent additional localized states, dis-
connected from the reservoir. As an example, the innermost edge
state �highest Landau level� is here split into three localized states
illustrating the possibility of having more than one localized state
per Landau level. The red �dark gray� dashed lines represent inco-
herent scattering between states in the cavity. T is the transmission
probability of the QPC and � is the interchannel coupling strength.
U��� is the Fourier transform of the time-dependent electric poten-
tial U�t� inside the cavity. The functions of the various voltages are
discussed in the text.
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rately in both the capacitance and the resistance. Surpris-
ingly, for a coherent capacitor with a single channel, only the
capacitance fluctuates and the resistance is found to be con-
stant and given by half a resistance quantum12

Rq =
h

2e2 . �1�

This quantization has indeed been observed experimentally6

thus establishing a novel manifestation of quantum coher-
ence in the ac regime.

The claim that the quantization of Rq requires quantum
coherence is perhaps not so astonishing. The interesting
question is the length scale on which coherence is necessary.
For the integer quantized Hall effect13 coherence is necessary
only over a cyclotron radius which is sufficient to establish a
Landau level structure. In fact as discussed in Ref. 14 inelas-
tic scattering �the destruction of long range coherence� can
even help to establish quantization of the Hall resistance.
Similarly in quantum point contacts15,16 coherence over the
width of the conduction channel is, in principle, sufficient to
establish a steplike structure of the conductance. In contrast,
as we will show, the quantization of the charge relaxation
resistance requires coherence over the entire capacitance
plate �the quantum dot� and not only over the contact region.
Thus the quantized charge relaxation resistance in Eq. �1� is
indeed very sensitive to dephasing.

There is a second important aspect in which the quantized
charge relaxation resistance Rq=h / �2e2� differs from quanti-
zation of a Hall resistance13 or of a ballistic conductance.15,16

In both of these latter cases quantization is associated with
perfect transmission channels which permit unidirectional
electron motion through the sample. In contrast, the quanti-
zation of Rq is independent of the transmission probability of
the contact. For a coherent capacitor plate connected via a
single spin polarized channel to a reservoir the quantization
of Rq is truly universal and holds even in the Coulomb block-
ade regime.17

Of course, no matter how pure the samples are, a spurious
interaction of the system with environmental degrees of free-
dom, is unavoidable. This introduces dephasing into the sys-
tem.

It is thus of interest to ask how dephasing affects the
quantization of the single channel charge relaxation resis-
tance and to investigate the crossover from the coherent to
the incoherent regime. Furthermore, in typical measurements
the temperature, though low compared with the level spacing
of the sample, is still comparable to other relevant energy
scales such as the driving frequency or the coupling strength
between cavity and lead. From a theoretical point of view it
is thus desirable to be able to distinguish between thermal
averaging and effects due to pure dephasing and to under-
stand the interplay between these two fundamental mecha-
nisms. Intuitively, one would expect that in the presence of
strong enough dephasing, the QD starts behaving like an
electron reservoir and thus that a fully incoherent single
channel capacitor should exhibit the two terminal resistance

Rq =
h

e2

1

T
, �2�

where T is the transmission probability of the channel
through the QPC connecting the system to the electron res-
ervoir. Interestingly, neither dephasing nor energy averaging
�high-temperature limit� lead directly to Eq. �2�. We find that
for the QD to become a true electron reservoir it is necessary
that many channels participate in the inelastic relaxation pro-
cess which a true reservoir must provide.

In the present work we employ a description of dephasing
provided by the voltage and dephasing probe models,18–22

where one attaches a fictitious probe to the system which can
absorb and re-emit electrons from or into the conductor. If
the probe supports only one channel, we find that the charge
relaxation resistance of the fully incoherent mesoscopic ca-
pacitor is given by

Rq =
h

2e2 +
h

e2

1 − T
T . �3�

Hence, the charge relaxation resistance is given by the sum
of the resistance as found from the �original� Landauer23 for-
mula h /e2�1−T� /T and one interface resistance24,25 h / �2e2�.
Incidentally, as we show below, this is also the value of Rq
obtained in the high-temperature limit for the coherent sys-
tem, illustrating an interesting relation between single chan-
nel dephasing and temperature induced phase averaging. A
hybrid superconducting-normal conductor provides another
geometry with only one normal narrow-wide interface.26

In the next two sections, we introduce the physical system
and the dephasing models. Then in Sec. IV, we specialize our
model to a specific form of the scattering matrix appropriate
for transport along edge states of the integer quantum Hall
regime and discuss the main results. Finally, our conclusions
are given in Sec. V.

II. MESOSCOPIC CAPACITOR

The system we consider can be viewed as the mesoscopic
equivalent of the ubiquitous classical series RC circuit. One
of the macroscopic “plates” of the classical capacitor is re-
placed by a QD and the role of the resistor is played by a
QPC connecting this QD to an electron reservoir. This sys-
tem is represented schematically in Fig. 1. The curves with
arrows represent the transport channels of the system corre-
sponding physically to edge states of the integer �spin polar-
ized� quantum Hall regime, in which the experiment of Ref.
6 was performed. By varying the gate voltage VQPC, one
changes both the transparency of the QPC and the electro-
static potential in the cavity. In the present work we take the
gate voltage Vg, applied to the macroscopic “plate” of the
capacitor, as a fixed voltage reference and set it to zero. A
sinusoidal ac voltage V���, applied to the electron reservoir,
drives an ac current through the system.

The low frequency linear ac response of the mesoscopic
capacitor can be characterized7 by an electrochemical capaci-
tance C� and a charge relaxation resistance Rq, defined via
the ac conductance as

SIMON E. NIGG AND MARKUS BÜTTIKER PHYSICAL REVIEW B 77, 085312 �2008�

085312-2



G��� = − i�C� + �2C�
2 Rq + O��3� . �4�

The linear low frequency regime is given by eVac�����,
where Vac is the amplitude of the ac voltage and � is the
mean level spacing in the QD.

Even in very clean samples some coupling of the current
carrying edge channel to some environmental states is un-
avoidable. For example, we can expect that an electron en-
tering the QD in the current carrying edge channel �full blue
curve in Fig. 1� may be scattered �red dashed lines in Fig. 1�
by phonons or other electrons into localized states belonging
to other �higher� Landau levels not directly connected to the
lead, before being scattered back into the open edge channel
and returning to the electron reservoir. If on the one hand,
this inter-edge state scattering is purely elastic, the presence
of these closed states is known to lead to a periodic modu-
lation of the conductance as a function of gate voltage, the
period of which is proportional to the number of closed
states.27,28 Such modulations, with a period corresponding to
about 10 to 15 closed states, have indeed been observed in
the experiment of Ref. 6 at low temperatures for a magnetic
field strength of 1.3 T. If on the other hand the scattering is
inelastic, such processes will in general be incoherent, i.e.,
they will destroy the information carried by the phase of the
electronic wave and hence lead to dephasing.

The idea of the present work is to mimic the latter pro-
cesses using the voltage and dephasing probe models as il-
lustrated in Fig. 2. The extension of these models to the ac
regime is presented in the next section. For simplicity, we
will here neglect the contribution of the elastic processes and
focus solely on the inelastic ones.

III. VOLTAGE AND DEPHASING PROBE MODELS IN
THE AC REGIME

To simulate the loss of phase coherence of electrons in-
side the cavity, we attach to the quantum dot a fictitious
probe,18–21 which draws no net current. An electron entering
this probe is immediately replaced by an electron reinjected
incoherently into the conductor. The main advantage of this

approach is that the entire system consisting of the conductor
and the probe can be treated as a coherent multiterminal
conductor within the scattering matrix approach. Some re-
cent applications of this approach include investigations on
the effect of dephasing on quantum pumping,29,30 on quan-
tum limited detection,31 and on photon assisted shot noise.32

The effect of dephasing on shot noise and higher moments
�counting statistics� has been investigated in Refs. 22 and 33.
A probe which dephases spin states has been introduced in
Ref. 34.

In terms of the spectral current density i	�E ,��, the cur-
rent at the driving frequency � into probe 	 is expressed as

I	��� =� dEi	�E,�� . �5�

The gauge invariant spectral current in turn is given by

i	�E,�� = �



g	
�E,���V
��� − U���� , �6�

where

g	
�E,�� =
e2

h
F
�E,��tr�1	�	
 − S	


† �E�S	
�E + ����

�7�

is the �unscreened� spectral ac conductance from probe 
 to
probe 	 and F
�E ,��= �f
�E�− f
�E+���� /��, f
 being the
electron distribution function in probe 
. V
��� is the volt-
age applied to reservoir 
 and U��� is the Fourier transform
of the electric potential inside the QD, which is assumed to
be homogeneous. The inclusion of this potential, which ac-
counts for the screening interaction between charges on the
conductor and charges on the gate electrode, is essential to
ensure gauge invariance in the dynamical regime.7 Finally,
S	
�E� is the �N	+N
�� �N	+N
� scattering matrix for elec-
trons with energy E scattered from the N
 channels of probe

 to the N	 channels of probe 	.

In the following we will be interested in the situation
where only one current carrying channel �full blue curve in
Fig. 2� connects the QD to the electron reservoir �N1=1�,
while the number of channels coupling to the fictitious probe
N
 is arbitrary.

For the voltage probe, we require that the current into the
fictitious probe vanishes at each instant of time or equiva-
lently at all frequencies, i.e., I
���=0. For the dephasing
probe, we require in addition that the current into the probe
vanishes in any infinitesimal energy interval dE and thus that
the spectral current i
�E ,��=0. This latter condition simu-
lates quasielastic scattering where the energy exchanged is
small compared to all other energy scales. Clearly, with these
definitions, a dephasing probe is also a voltage probe but a
voltage probe need not be a dephasing probe. In both cases
however, current conservation implies that I���� I1���
=−i�CU���, where C is the geometrical capacitance of the
QD. This relation, together with Eqs. �5� and �6�, allows us
to self-consistently eliminate the internal potential U��� in
the usual fashion.7

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
VQPC
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FIG. 2. �Color online� Schematic representation of the voltage
and dephasing probe models. The incoherent interchannel coupling
depicted in Fig. 1, is mediated by a voltage probe �VP� or a dephas-
ing probe �DP� represented above as a shaded plane. The entire
system, including the fictitious probe, which draws no net current,
is again described as a coherent multiterminal scatterer.
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A. Voltage probe

From the condition I
���=0, we find the ac conductance

G��� =
I���
V���

=
− i�C����
���� − i�C

, �8�

where

���� = g11��� −
g1
���g
1���

g

���
. �9�

Here and for all of the following, we have introduced the
notation g	
���=	dEg	
�E ,��. Upon expanding to second
order in � and comparing coefficients with Eq. �4�, we find

C� =
C�1

− iC + �1
and Rq = −

�2

�1
2 , �10�

with

�1 = �
	,


g	

1 and �2 = �

	


�g	

2 − g	


1 g


1 /g



0 � , �11�

where g	
���=g	

0 +g	


1 �+g	

2 �2+O��3� and ����=�1�

+�2�2+O��3�. The conductance expansion coefficients are
given in terms of the scattering matrix and its energy deriva-
tives as

g	

i =� dEf
��E�A	


i �E� �i = 1,2,3� , �12�

with

A	

0 = −

e2

h
tr�1	�	
 − S	


† S	
� ,

A	

1 =

e2

4�
tr�S	


† S	
� − �S	
� �†S	
� ,

A	

2 = −

e2h

8�2 tr
S	
� †S	
� −
1

3
�S	


† S	
��� , �13�

where � denotes differentiation with respect to E and for
compactness we have suppressed the energy arguments. In
the voltage probe model the electrons in the fictitious lead
are allowed to relax towards equilibrium arbitrarily fast and
we thus have f
�E�= f1�E�=1 / �1+exp�
�E−EF�
�� f�E�.

B. Dephasing probe

In contrast to the voltage probe, the distribution function
f
�E� of the dephasing probe is a priori not known. The
requirement i
�E ,��=0, together with Eq. �6� yields

G��� =
− i�C�̃���
�̃��� − i�C

, �14�

where

�̃��� � g11��� −� dE
g1
�E,��g
1�E,��

g

�E,��
. �15�

The electrochemical capacitance and the charge relaxation
resistance are given in terms of the first and second order

frequency expansion coefficients �̃1 and �̃2 as

C� =
C�̃1

− iC + �̃1

and Rq = −
�̃2

�̃1
2 . �16�

Making use of the unitarity of the scattering matrix, we find
explicitly

�̃1 = �
	

� dEf��E�A	


1 �E� = �1, �17�

and

�̃2 = �
	

�g	


2 −� dEf��E�
A	


1 �E�A


1 �E�

A


0 �E�

� . �18�

Comparing with Eqs. �11�, we see that at zero tempera-
ture, voltage and dephasing probes equally affect the ac con-
ductance. At finite temperature, the electrochemical capaci-
tance of the mesoscopic capacitor still does not distinguish
between dephasing and voltage probes, while the charge re-
laxation resistance is, in principle, sensitive to whether the
dephasing mechanism is quasielastic �dephasing probe� or
inelastic �voltage probe�.

IV. INTERFERING EDGE STATE MODEL

A. Scattering matrix for independent channels

We next apply the two dephasing models described in the
previous section to a model for the scattering matrix of the
mesoscopic capacitor in the integer quantum Hall regime
introduced in Refs. 6 and 35, which is here extended to in-
clude a voltage �dephasing� probe. The special form of the
scattering matrix arises due to multiple reflections of the
electronic wave function within the cavity in close analogy
with a Fabry-Pérot interferometer. In setting up the scattering
matrix, we neglect the electron-electron interaction. Thus
single charging effects such as the Coulomb blockade are
disregarded. In Refs. 6 and 17 it was shown that in the cal-
culation of the conductance of a mesoscopic capacitor, such
effects can be incorporated into a renormalization of the
level spacing in the cavity.

The additional probe, with N
 channels is coupled to the
single edge channel propagating through the QPC. Clearly
N
−1 channels of the probe are perfectly reflected at the
QPC from within the cavity as depicted in Figs. 2 and 3. For
simplicity, we shall assume the channels to be independent,
which means that we consider the physical edge channels to
coincide with the eigenchannels of the transmission matrix.
Furthermore, we consider a symmetric QPC and assume that
each channel couples identically to the fictitious probe with
strength �. Then the �N
+1�� �N
+1� scattering matrix S1

of the QPC and the 2N
�2N
 scattering matrix S� of the
fictitious probe have block diagonal form and may be param-
etrized as follows:

S1 = �r1 t1�

t1 r1�
� and S� = �r� t��

t� r��
� , �19�

with r1= ir and r1�=diag�irei
1�E� ,ei
2�E� , . . . ,ei
N

�E��

where we take r to be real and 
l�E� is the phase
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accumulated by an electron during one round trip along the
lth edge state through the QD. t1= ��1−r2 ,0 , . . . ,0�T and
t1�= ��1−r2ei
1�E� ,0 , . . . ,0�. Finally, r�=r��=diag�i�1−� , . . . ,
i�1−�� and t�= t��=diag��� , . . . ,���.

The total �N
+1�� �N
+1� scattering matrix, which is
obtained from the series combination of the two scattering
matrices S1 and S�, takes the form

S = �S11 S1


S
1 S


� , �20�

with

S11 =
i�r + ei
1�1 − ��

1 + rei
1�1 − �
,

S1
 = � ���1 − r2�ei
1

1 + rei
1�1 − �
,0, . . . ,0

N
−1 � ,

S
1 = � ���1 − r2�

1 + rei
1�1 − �
,0, . . . ,0

N
−1 �T

,

S

 = diag� i��1 − � + rei
1�

1 + rei
1�1 − �
,

i�1 − � + ei
2

1 − iei
2�1 − �
, . . . ,

i�1 − � + ei
N


1 − iei
N
�1 − �
� . �21�

Using these expressions together with Eq. �10� for the
voltage probe, respectively, Eq. �16� for the dephasing probe,
we can express the electrochemical capacitance and the
charge relaxation resistance as a function of the transparency
T=1−r2 of the current carrying channel, the phases

1 , . . . ,
N


, and the coupling strength �. In order to investi-
gate the crossover from the coherent to the incoherent re-
gime, we will later on make a specific physically motivated
choice for the energy dependence of the phases. However,
even without specifying the form of the energy-phase rela-
tion, we can already draw some general conclusions by look-
ing at the incoherent limit �→1. This we do next after
briefly reviewing the coherent case �=0.

B. Results and discussion

1. General results at zero temperature

We first consider the zero temperature limit. In this case
voltage and dephasing probe models are equivalent as shown
in Sec. III. The capacitance and the resistance are given by

C� =

− C�
	


A	

1

− iC − �
	


A	

1

, �22�

and

Rq =

�
	

�A	


2 −
A	


1 A


1

A


0 �

��
	


A	

1 �2 , �23�

where A	

i �A	


i �EF� are given in Eq. �13�. In the coherent
regime ��=0�, we recover the universal result Rq=h / �2e2�
for the resistance while the capacitance is given by C�

=Ce2� / �C+e2��, with the density of states of the cavity
��E�=1 / �2�i�S†�E�dS�E� /dE, where S�E�=lim�→0 S11�E�,
for S11 given in Eq. �21�. In the opposite, fully incoherent
regime ��=1�, we find

S1

S
1

Nφ

φ1

φ2
φ3

φ4 . . . Sε

FIG. 3. �Color online� S1 is the �N
+1�� �N
+1� scattering
matrix of the QPC relating the incoming channel to the N
 channels
inside the cavity and S� is the 2N
�2N
 scattering matrix relating
the N
 channels in the cavity with the N
 channels in the probe.
From these two matrices one can derive S, the total scattering ma-
trix relating the incoming channel to the N
 channels in the probe.
An electron in the ith channel accumulates a phase 
i inside the
cavity.
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C� =

C
e2

2�
�
i=1

N



i�

C +
e2

2�
�
i=1

N



i�

, �24�

which is independent of T, and

Rq =
h

2e2

�
i=1

N


�
i��
2

��
i=1

N



i��2 +
h

e2� 1

T
−


1�

�
i=1

N



i�� . �25�

For a single open dephasing channel �N
=1�, Eq. �25� re-
duces to

Rq =
h

2e2 +
h

e2

1 − T
T . �26�

Thus, as mentioned in the Introduction, if only the current
carrying channel is dephased, the charge relaxation resis-
tance is the sum of a constant interface resistance24–26

Rc=h / �2e2� and the original Landauer resistance RL

=h /e2�1−T� /T of the QPC.

2. Smooth potential approximation

In the following, we will assume that the potential in the
cavity is sufficiently smooth so that the energy dependent
part of the accumulated phase is the same for all channels.
Then 
1��
2�� ¯ �
N


� �
�. Within this approximation,
Eqs. �24� and �25�, for the fully incoherent limit �=1, reduce
to

C� =

C
e2

2�
N

�

C +
e2

2�
N

�

, �27�

and

Rq =
h

e2

1 − T
T +

h

2e2 +
h

2e2

N
 − 1

N


. �28�

Written in this way, this expression for Rq again lends itself
to a simple interpretation. The first term on the right-hand
side of Eq. �28� is the original Landauer resistance of the
QPC. The second term Rc� h

2e2 is the interface resistance of
the real reservoir-conductor interface and the third term
R
= h

2e2

N
−1
N


is the resistance contributed to by the dephasing.
In the limit of a very large number of open dephasing chan-
nels ��=1, N
�1�, which corresponds physically to spatially
homogeneous dephasing, R
→Rc and so Rq→h /e2�1 /T� as
well as C�→C. Thus, in this limit the fictitious probe con-
tributes half a resistance quantum and the mesoscopic ca-
pacitor behaves like a classical RC circuit with a two termi-
nal resistance in series with the geometrical gate capacitance.

Next we investigate the crossover from the coherent to the
incoherent regime. For this purpose, we assume that the ac-

cumulated phase depends linearly on energy in the vicinity
of the Fermi energy; explicitly we take 
1�E�=
2�E�= ¯

=
N

�E�=2�E /�, where � is the mean level spacing in the

cavity. Then, the fictitious probe is characterized by only two
parameters; the number of channels N
 and the coupling
strength �. Following Ref. 19, the latter can be related to the
dephasing time �
. The scattering amplitudes have poles
at the complex energies E=En− i�e /2− i�
 /2, where En
= �2n+1�� /2 with n=0,1 , . . . is a resonant energy and �e
=−��/��ln�r� and �
=−�� /��ln��1−�� are, respectively,
the elastic and inelastic widths. The dephasing time �


=� /�
 is then related to � by �=1−exp�−h / ��
���.
In Fig. 4 we show the behavior of Rq as a function of the

dephasing strength �, if the probe is weakly coupled so that
only one channel �N
=1� with transmission probability �
connects the cavity to the fictitious reservoir. We see that if
the current carrying channel is perfectly transmitted through
the QPC, i.e., for T=1, the resistance is insensitive to
dephasing and is fixed to its coherent value of half a resis-
tance quantum �curve 3�. This is reasonable since for perfect
transmission the electronic wave function is not split at the
QPC and hence an electron cannot interfere with itself
whether or not it evolves coherently along the edge channel.
We emphasize however, that this simple argument holds only
if the dephasing probe couples to a single channel. If the
probe is coupled more strongly, such that it couples to addi-
tional �closed� channels inside the cavity �N
�1�, the ensu-
ing effective incoherent coupling between channels will af-
fect Rq in an �-dependent manner. Turning our attention back
to the single channel case of Fig. 4, we see that as the trans-
parency of the channel is reduced, the charge relaxation re-
sistance increases with �. Also evident is that dephasing af-
fects the resistance nonmonotonically in the off-resonant
case �curves a�, where the energy of the electron lies be-
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FIG. 4. �Color online� Rq as a function of the dephasing strength
� of a single channel probe �N
=1� at zero temperature, for differ-
ent values of the channel transmission probability T. �1� T=0.6, �2�
T=0.8, and �3� T=1. The dashed curves �a� show the off-resonant
case �E�minn�EF−n��=0.5�, while the full curves �b� show the
on-resonant case �E=0. The horizontal dotted lines represent the
value of h

2e2 + h

e2
1−T
T for the different transmission probabilities.
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tween two Fabry-Pérot-type resonances, and monotonically
in the on-resonant case �curves b�. This can be related to the
fact that dephasing induces both a decrease of the peak value
and a broadening of the density of states �DOS� in the cavity.
On resonance the net result is thus always a monotonous
decrease of the amplitude of the DOS. Off resonance how-
ever, the amplitude may first increase due to the widening of
the closest resonance. Finally, as expected dephasing is seen
to affect the resistance; the stronger, the weaker the coupling
to the reservoir is, i.e., the longer an electron dwells inside
the cavity, where it can undergo dephasing.

3. Dephasing vs temperature induced phase averaging

It is instructive to compare the results obtained in the
previous section in the incoherent limit �=1 at zero tempera-
ture with finite temperature effects in the coherent regime
�=0. At finite temperature and for a perfectly coherent single
channel system, the charge relaxation resistance is given by7

Rq =
h

2e2

� dE„− f��E�…��E�2


� dE„− f��E�…��E��2
, �29�

where ��E� is the density of states of the channel which was
defined above and is here explicitly given by6 ��E�= �1 /��
���1−r2� / �1+r2+2r cos�2�E /���
. At low temperature
kBT��, an expansion around the Fermi energy yields Rq

= h
2e2�1+ �2

3
2 �ln����EF���2� with 
=1 / �kBT�. Finite tempera-
ture effects thus arise at order T2 and lead to the appearance
of pairs of peaks in the resistance as a function of Fermi
energy around each resonance, where the square of the de-
rivative of the density of states is maximal17 �see the thin red
curve in Fig. 6 �top��. This behavior has indeed been ob-
served experimentally36 in the weakly coupled regime, where
��kBT�T�. At very high temperature kBT��, the inte-
grals in Eq. �29� may be evaluated asymptotically as shown
in the Appendix and we obtain Rq=h / �2e2�+h /e2�1−T� /T.
Thus phase averaging in the high-temperature coherent re-
gime ��=0� is equivalent to dephasing via a fictitious probe
with a single open channel ��=1� at zero temperature �see
Eq. �26��. This fact and the crossover from the low- to the
high-temperature regime are illustrated in the upper panel of
Fig. 5. There we show the charge relaxation resistance as a
function of the inverse temperature 
 for different dephasing
strengths � for N
=1. For complete dephasing �curve a�, Rq
is temperature independent and given by Eq. �25� with N


=1. Interestingly, we find that for a single channel probe,
voltage and dephasing probes equally affect the resistance
even at finite temperature. Technically this is due to the fact
that for a linear energy-phase relation such as assumed in this
work, the energy dependent parts of each factor in the inte-
grands of Eq. �30� below are identical.

Dephasing vs voltage probe. At the end of the last para-
graph, we concluded that dephasing and voltage probes are
indistinguishable for a single channel probe as long as the
accumulated phase is linear in energy. When N
�2, the two
dephasing models differ at finite temperature. Introducing the
emittances35 N	

em�1 / �2�i��
 tr�S	

† S	
� �=1 / �ie2��
A	


1 ,
which represent the DOS of carriers emitted into probe 	 and
the injectances N


in�1 / �2�i��	 tr�S	

† S	
� �=1 / �ie2��	A	


1

representing the DOS of carriers injected from probe 
, we
may write the difference of resistance between the two mod-
els �Rq�Rq

DP−Rq
VP as
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FIG. 5. �Color online� �a� Rq as a function of the inverse tem-
perature 
 for N
=1 and dephasing strengths: �a� �=1, �b� �=0.9,
�c� �=0.5, and �d� �=0. The dotted line gives the value h / �2e2�. As
discussed in the text, dephasing and voltage probes are indistin-
guishable in this case. �b� Rq as a function of the inverse tempera-
ture 
 for N
=2 and dephasing strengths: �a� �=1, �b� �=0.7,
and �c� �=0. The dotted line gives the value
h /e2�1−T� /T+h / �2e2� and the dashed line gives the value of
h / �2e2�. As discussed in the text, dephasing and voltage probes
differ for finite dephasing if ��1 �curves b�. 
 is given in units of
the inverse level spacing �−1. We show here the resonant cases
�E�minn�EF−n��=0; the off-resonant behavior is similar.
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�Rq =
h

e2

� dEf�N

em� dEf�N


in

� dEf�tr�1
 − S


† S

�

−� dEf�
N


emN

in

tr�1
 − S


† S

�

�� dEf�N�2 ,

�30�

where N=�	N	
in=�	N	

em is the total DOS and for compact-
ness we have suppressed all the energy arguments. As illus-
trated in the lower panel of Fig. 5, we find somewhat coun-
terintuitively, that the resistance is larger in the presence of a
dephasing probe than in the presence of a voltage probe.
Indeed, one would have expected that since the voltage
probe is dissipative and the dephasing probe is not, the
former should lead to a larger resistance than the latter. This
intuition fails when applied to Rq. Finally, for complete
dephasing �curve a�, the two models coincide again. This is
due to the fact that for �=1 the coefficients given in Eq. �13�
become energy independent as a consequence of the linear
energy-phase relation.

4. Comparison with experiment

Comparison with the experiment,6 leads us to some im-
portant conclusions. In this experiment, the real and imagi-
nary parts of the ac conductance �4� were measured at mK
temperatures kBT�� while varying the transmission of the
QPC, giving access to the charge relaxation resistance over a
wide range of channel transparencies. In the highly transmis-
sive regime �T�1� the quantization of the charge relaxation
resistance of a single channel mesoscopic capacitor could
thereby be verified. As the coupling to the lead was reduced
an oscillating increase in resistance was measured and excel-
lent agreement with a theoretical model including only tem-
perature broadening effects was obtained in the regime �
�kBT�T�. For higher temperatures T�4K�� /kB the re-
sistance was found to approach h

e2 for a single perfectly open
channel36 indicating that in this regime, the cavity truly acts
like an additional reservoir.

We now compare the experimentally observed behavior of
the charge relaxation resistance with predictions from our
model. According to our discussion in Sec. IV B 3, pure
phase averaging due to temperature broadening would lead

to Rq →
kBT��

h
2e2 for T=1. Thus the observed value of the resis-

tance hints at the presence of a dephasing mechanism involv-
ing many channels effective at high temperatures, which is
suppressed at low temperatures. One such mechanism is the
thermally activated tunneling from the current carrying edge
channel to nearby localized states, which together act as a
many channel voltage �dephasing� probe depending on the
energetics of the scattering process. To illustrate this, we next
compare the charge relaxation resistance of a coherent ca-
pacitor with one which is subject to dephasing and show that
for high temperature the latter shows a behavior in agree-
ment with experiment. Figure 6 shows the charge relaxation
resistance as a function of the QPC voltage. The dependence
of the transmission probability on VQPC is modeled assuming

that the constriction is well described by a saddlelike
potential6,37 T= �1+exp�−a0�VQPC−E0�
�−1 and a change in
VQPC is assumed to induce a proportional shift in the elec-
trostatic potential of the QD. In the upper panel we show the
coherent case �=0 for three different temperatures kBT /�
=0.8, 0.1, and 0.01. At low temperature and small transmis-
sion we recognize the resistance oscillations discussed in
Sec. IV B 3. As the temperature is increased, Rq goes to-
wards h /e2�1−T� /T+h / �2e2�. This is to be contrasted with
the situation shown in the lower panel where we display the
incoherent case for a voltage probe with �=0.9, N
=10, and
the same set of temperatures. For an open constriction
�T�1�, Rq is now close to h /e2 in the high-temperature re-
gime in agreement with the experimental observation.

V. CONCLUSION

In this work, we investigate the effect of decoherence on
the dynamic electron transport in a mesoscopic capacitor.
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FIG. 6. �Color online� Rq as a function of VQPC for different
temperatures for a coherent system �=0 �a� and for a strongly in-
coherent system �=0.9 and N
=10 �b�. The inverse temperature 

is given in units of the inverse level spacing �−1.
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Extending the voltage and dephasing probe models to the ac
regime, we calculate the charge relaxation resistance and the
electrochemical capacitance, which together determine the
RC time of the system. Dephasing breaks the universality of
the single channel, zero temperature charge relaxation resis-
tance and introduces a dependency on the transparency of the
QPC. We find that complete intrachannel relaxation alone is
not sufficient to recover the two terminal resistance formula
but rather yields a resistance which is the sum of the original
Landauer formula and the interface resistance to the reser-
voir. This is also the resistance obtained in the high-
temperature limit of the coherent single channel system.
Only in the presence of perfect interchannel relaxation with a
large number of channels, does the QD act as an additional
reservoir and we recover the classically expected two termi-
nal resistance.
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APPENDIX: HIGH-TEMPERATURE REGIME INTEGRALS

In this Appendix we compute the integrals appearing in
the high-temperature limit of Eq. �29�. Asymptotically we
have

lim

→0

Rq =
h

2e2

I2

�I1�2 , �A1�

where

I1 = �
0

�

dE��E� and I2 = ��
0

�

dE��E�2, �A2�

with ��E�= 1
�

1−r2

1+2r cos2�E/�+r2 . Following a change of variables
x= 2�E

� we get

I1 =
1

2�
�

0

2�

dx
1 − r2

1 + 2r cos x + r2 , �A3�

and

I2 =
1

2�
�

0

2�

dx
�1 − r2�2

�1 + 2r cos x + r2�2 . �A4�

A simple way of computing these integrals is to use the
�Poisson kernel� identity

1 − r2

1 + 2r cos x + r2 = �
k=−�

�

�− r��k�eikx, �A5�

which can easily be verified by splitting the sum as
�k=−�

� xk=�k=0
� xk+�k=−�

0 xk−1 and utilizing the fact that for
�r � �1, the geometric series converge. Integrating the sum in
I1 term by term and using the identity 	0

2�eikxdx=2��k0 for
k�Z, we immediately find I1=1. Similarly we have

I2 =
1

2�
�

0

2�

dx� �
k=−�

�

�− r��k�eikx�2

=
1

2�
�

k,k�=−�

�

�− r��k�+�k���
0

2�

dxei�k+k��x

= �
k,k�=−�

�

�− r��k�+�k���k+k�,0 =
1

�
�

k=−�

�

�− r�2�k� = �
k=0

�

�− r�2k

+ �
k=−�

0

�− r�−2k − 1 =
2

1 − r2 − 1 =
1 + r2

1 − r2 . �A6�

Substituting back into Eq. �A1� yields the desired result.
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